

Artificial intelligence has shifted from an interesting experiment to a central pillar of modern financial strategy. What started as a set of productivity tools has become a structural force reshaping how finance teams operate, make decisions, and create value. Yet for all its promise, AI remains unevenly understood and unevenly implemented. Some organisations are progressing with confidence whilst others are still wrestling with the fundamentals.
This piece explores the state of AI adoption in finance, the applications creating real impact today, and the structural challenges that leadership teams must navigate as they move from experimentation to strategic integration.
By 2025, most finance functions have moved beyond pilots and proofs of concept. AI is no longer a novelty; it is an operational expectation. CFOs are increasingly benchmarking progress, scrutinising outcomes, and building long-term roadmaps for functional transformation.
Several themes define the current landscape:
Yet adoption remains patchy. The dominant question has shifted from “what can AI do?” to “how do we embed it responsibly, securely, and in a way that scales without creating new risks?” Many organisations have made progress on surface-level use cases but have yet to unlock deeper operational value.
Machine learning models now monitor transactions in real time, detecting anomalies with far greater accuracy than rule-based methods. The same models are being used to refine credit risk, identify vulnerable customers, and anticipate potential compliance breaches.
The combination of RPA and AI is removing large volumes of manual work across AP, AR, reconciliations, data entry, and control activities. The shift is not simply cost-driven; automation is helping teams redirect capacity toward analysis and business partnering.
AI-driven models analyse behavioural and transactional data to tailor financial products, provide spending insights, and deliver targeted credit or investment recommendations.
Algorithmic trading platforms, risk models, and machine learning forecasting tools are driving more informed investment decisions. Portfolio managers now use AI to rebalance positions, run simulations, and assess long-term performance scenarios with greater precision.
Generative AI is increasingly used to interpret regulatory changes, summarise obligations, and assist in drafting compliance documentation. For highly regulated institutions, this reduces time spent on manual interpretation and lowers the risk of oversight.
AI’s momentum is clear, but so are the roadblocks. Finance leaders repeatedly point to several persistent challenges:
Models trained on historical datasets risk amplifying existing inequalities in lending, fraud scoring, and investment decisions. Regulators are watching this area closely, and organisations cannot afford missteps.
Many AI systems still operate as opaque “black boxes,” creating complications when auditors, regulators, or senior stakeholders need line-of-sight into how a decision was produced.
The pace of regulatory development has not caught up with the speed of innovation. Organisations are forced to navigate uncertainty while maintaining compliance with evolving standards.
AI relies on vast volumes of sensitive data, increasing exposure to cyber threats and the risk of misuse. GDPR obligations add a further layer of complexity to how models are trained and deployed.
The most pressing issue is the lack of finance professionals who understand AI. The industry needs hybrid talent with financial literacy, data literacy, and strategic understanding. That blend remains scarce.
Many institutions are still constrained by legacy systems that cannot integrate with modern AI tools without significant re-architecting. This slows adoption and limits the impact of more advanced models.
The global market for AI in finance is forecast to exceed £150 billion by 2030, with the potential to generate more than £800 billion in combined savings and revenue uplift. Realising that value will require more than investment; it will require discipline.
Organisations that move fastest will be those that:
AI is no longer simply a tool for efficiency; it is a catalyst for rethinking what the finance function can be. The challenge for leaders is not whether to adopt AI, but how to build an environment where AI becomes a sustainable, strategic asset rather than an experimental add-on.
The organisations that succeed will be those that blend ambition with rigour, pairing technological capability with clear principles, strong governance, and the right talent. The future of finance will not be defined by AI alone, but by the institutions that learn to wield it well.




